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Abstract 

The measurement of shape is a basic object inspection task. We use a noncontact method to 
determine shape called photometric stereo. The method uses three light sources which 
sequentially illuminate the object under inspection and a video camera for taking intensity 
images of the object. A significant problem with using photometric stereo is determining 
where to place the three light sources and the video camera. In order to solve this problem, 
we have developed an illumination planner that determines how to position the three light 
sources and the video camera around the object. The planner determines how to position 
light sources around an object so that we illuminate a specified set of faces in an efficient 
manner, and so that we obtain an accurate measurement. We predict the uncertainty in our 
measurements due to sensor noise by performing a statistical simulation in our planner. This 
gives us the capability to determine when a measured shape differs in a statistically signifi- 
cant way from what we expect. From a high level, our planner has three major inputs: the 
CAD model of the object to be inspected, a noise model for our sensor, and a reflectance 
model for the object to be inspected. We have experimentally verified that the plans gener- 
ated by the planner are valid and accurate. In most cases, the uncertainty predictions made 
by the planner were accurate to within 10%. 
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1. Introduction 

The measurement of shape is a basic object inspection task. This measurement is performed 
in many modern manufacturing environments. However, the measurements are usually 
made manually. Manual inspection is monotonous, is very labor intensive, and is subject to 
human error. Some companies have turned to computer vision techniques. 

Computer vision research has produced a number of basic techniques for measuring the 
shape of an object: stereo vision, range finders, and photometric techniques. Photometric 
techniques, unlike stereo, determine shape without needing to solve the correspondence 
problem. Photometric systems, unlike range finders, are cheap and are able to measure 
shape at a wide range of resolutions. For these reasons, we use photometric methods to 
determine object shape. Photometric techniques use physically based reflectance models 
[14] to transform image brightness into shape. Image brightness depends on lighting geome- 
try, imaging geometry, and surface shape. If we can control imaging geometry and illumina- 
tion geometry, we can use a reflectance model in conjunction with measured image 
brightness to determine surface shape. 

Imaging geometry has been explored by a number of researchers. However, very few 
researchers have investigated how to illuminate an object that they are trying to inspect. In 
photometric stereo, the position of the light source affects what parts of the object are illumi- 
nated and the accuracy with which you can recover the object's shape. The problem is to 
determine the best place to put light sources in order to inspect a given object. If we arrange 
light sources in the shape of a tessellated sphere (say a N-frequency icosahedron), the opti- 
mal light source positions are not obvious, and the number of potential light source combi- 
nations is too large for a human operator to consider. 

CCD 
Camera 

Light 
Source 
Array 

Object 
Under 
Inspection 

Robot 

Fig. 1. Experimental Setup 

We investigate the illumination problem from two perspectives. First, we determine how to 
position light sources around an object so that we illuminate a specified set of faces in an 
efficient manner. In order to solve this problem, we have to determine light source visibility 
and we have to find some method of efficiently "covering" the specified set of object faces. 
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Secondly, we determine how to position the light sources so that they give us an accurate 
measurement of shape. There are two basic types of errors in photometric measurements of 
lambertian objects: random errors (noise) and fixed errors. Random errors are due to the 
variance of the camera and digitizer. These are the errors that we try to predict with our 
planner. Fixed errors include: errors in light source direction, errors in light source radiance, 
errors in the photometric function. Fixed errors can be accounted for by a careful calibration 
procedure. 

Noise causes uncertainty in our shape measurement. The amount of uncertainty that this 
noise will create in our measurement will depend on light source positions. By using a noise 
model of the CCD, a CAD model of the object we are inspecting, and the lambertian reflec- 
tance model we can determine how much uncertainty we can expect in our shape measure- 
ment for a given light source configuration. We can find an optimal light source 
configuration, one that produces a minimum amount of measurement uncertainty. 

Our ability to predict the uncertainty in our measurements gives us the capability to deter- 
mine when a shape differs in a statistically significant amount from what we expect. This is 
an essential requirement for an inspection system because it allows defects to be reliably 
identified. 

The environments we will study are structured. We will assume that we know what we are 
looking at (i.e.: We have a CAD model of the object that we want to inspect.) and that we 
know the pose of the object. This gives us a tremendous amount of information. We can plan 
our light placement to sequentially illuminate the entire surface of the object (cover the 
object) we are trying to inspect, and we can use our a priori geometric knowledge of the 
object to optimize our inspection parameters. This is a realistic scenario for many structured 
environments including manufacturing environments, nuclear plant maintenance, and space 
station missions. 

The objects we look at are convex. So, we will be ignoring interreflection. While this may 
seem like a big restriction, we do not feel that the remaining problem is trivial. We assume 
orthographic projection and parallel incident light for our work. 

Our work allows surface shape measurements to be made. The intent is that this information 
can be used for inspection. However, we do not become involved with setting up specific 
inspection criteria. Each inspection task requires unique inspection criteria, which must be 
determined on a case by case basis. 

From a high level, our problem has three major inputs: the CAD model of the object we are 
trying to inspect, the noise model of our sensor (the noise model for our CCD camera), and 
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the reflectance model of the object we are trying to inspect. These models are used to gener- 
ate an illumination plan. 

Fig. 2. Illumination Planning Data Flow 
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2. Previous Work 
We summarize related CAD based inspection work. We cover work by Cowan, Tarabanis 
and Tsai, Sakane, Yi, and the SPIE. 

2.1. Cowan 

Cowan developed the synthetic approach to determining a camera's viewpoint. In [1], given 
a camera and lens, Cowan develops methods for determining 3-D camera locations that sat- 
isfy the following requirements: focus, field of view, visibility, view angle, and prohibited 
regions. For each requirement he builds a 3-D region that satisfies the requirement. Then, he 
intersects the regions to find camera locations that satisfy all the requirements. 

The visibility constraint is the most relevant constraint to our work. Cowan determines visi- 
bility using the concept of "separating support planes". Given a convex polygon "S" and an 
occluding convex polygon "O", a separating support plane divides space into two halves. 
One half space contains S and not O. The other half space contains O and not S. The half 
planes are constructing by rotating a plane about each edge of S. The plane is oriented so it 
is between O and S, overlapping S. Then, the plane is then rotated about each edge of S until 
it hits a vertex or an edge of O. This is repeated for each edge of S, and for each edge of O. 
The union of all the half spaces containing S forms the set of viewpoints where O does not 
occlude S. The procedure can be extended to convex polyhedral objects and obstacles. 

Separating 
support plane 

Fig. 3. Cowan's Separating Support Plane 

In [2], Cowan discusses positioning point light sources for scene illumination. First, given a 
viewpoint region, Cowan finds the minimum and maximum camera apertures that bound the 
viewpoint region. Then, Cowan relates image irradiance to scene radiance and scene radi- 
ance to lambertian scene irradiance. Assuming a camera with a certain dynamic range, and a 
light source with a certain flux, he determines the minimum and maximum distance from the 
surface that the light source can be positioned. 

In [3] Cowan reviews his previous work and extends it by considering the edge contrast of 
convex lambertian surfaces. He determines the possible source orientations and distances, 
with respect to a given convex corner (consisting of two lambertian surfaces), that produce a 
required intensity difference (contrast) between the two surfaces. 
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2.2. Tsai and Tarabanis 

In [4], Tsai and Tarabanis develop a method for determining the visibility regions for gen- 
eral concave/convex polyhedral targets occluded by general concave/convex polyhedral 
obstacles. Their method, at its heart, is similar to Cowan's method. They have added on a 
convex decomposition algorithm, and have improved the computational efficiency of Cow- 
an's original algorithm. 

In [5], Tarabanis, Tsai, and Allen use the methods of [4] to search for visible regions where 
a feature can be viewed. Then, they determine the admissible camera locations where a fea- 
ture can be resolved to a desired resolution. Locations are determined for orthogonal and 
general viewing directions. 

In [6], Tarabanis, Tsai, and Allen expand on their previous work. They want to determine 
camera pose and optical settings so that a polyhedral object is visible, in the field of view, in 
focus, and resolved to sufficient resolution (four constraints). They pose the problem as an 
optimization problem in 8 dimensional space. The camera orientation and position contain 
five degrees of freedom. The distance from the back nodal point to image plane, lens focal 
length, and aperture are the three other degrees of freedom. Visibility is determined using 
the method described in [4]. The other constraints are posed as inequalities, and are merged 
into one optimization function with arbitrary weights assigned to each constraint. The func- 
tion is then optimized using the visibility region boundaries as optimization constraints. 

Tsai and Tarabanis and Cowan use a synthesis approach to sensor location. The sensor loca- 
tions that satisfy a task are determined directly using optimization techniques. Sakane and 
Yi use a generate and test approach. Sensor locations are generated. Then, they are evalu- 
ated against a criteria function. 

2.3. Sakane 

In [9], Sakane describes a system that determines camera placement on a geodesic dome, 
that is placed around a target's point of interest. The camera is placed so that the point of 
interest is not occluded by other objects in the environment or by the manipulator holding 
the camera. Sakane determines occlusion free regions by doing depth buffering from the 
center of the dome to each facet. The minimum distance is stored at each facet. If the mini- 
mum distance is less than the radius of the dome, the viewpoint is occluded. The radius of 
the geodesic dome is chosen to get sufficient target resolution. 

In [10, 11], Sakane describes positioning light sources for a photometric stereo system. He 
tries to optimize the extracted surface normal and the surface coverage for lambertian sur- 
faces. Sakane uses the method of determining occlusion free viewpoints described in [9] to 
find candidate positions for the light sources. These positions provide shadow free illumina- 
tion. 

Sakane proposes a metric of surface orientation reliability that relies on the condition num- 
ber of the source matrix to estimate the error in the surface normal vector (By definition, INI 
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<cond(S) 
INI  " w     HI 

The second metric Sakane uses is the size of the intersection region of the three light sources 
and the camera on the gaussian sphere. Each light source will illuminate a hemisphere of the 
Gaussian sphere, and the camera will be able to observe a hemisphere of the gaussian 
sphere. By intersecting the four hemispheres, Sakane determines the amount of the gaussian 
sphere that is detectable. 

Sakane combines the detectability metric and surface orientation reliability metric into a sin- 
gle criterion function. The weights of the two metrics are arbitrary. In [11], Sakane uses a 
movable camera. This allows a further degree of freedom in optimizing the detectability 
metric. In [12], Sakane considers lambertian edge contrast as a metric. Visibility seems to be 
determined using the methods described in [9]. 

2.4. Yi 

In [13], Yi considers edge contrast for specular lobe objects, using a polarized light version 
of the Torrance Sparrow model. Yi forms a discrete spherical viewing space, with points 
positioned so that the arc length between viewing points is approximately equal. At discrete 
points along an edge Yi calculates the intensity difference. Then, he finds the "contrast dis- 
tribution function" metric, which tells how much of the edge has a contrast above a certain 
threshold. The second metric is sensor visibility of the edge, which he defines as the ratio of 
the unoccluded portion of the edge to the entire edge length. Given a set of required edges, 
Yi searches for light source and sensor position which maximizes the two criteria functions. 
Yi does not describe how he combines the two criteria functions. The~ results presented in 
the paper are for a synthetic cylinder and cube. No real results are presented. 

2.5. SPIE - Society of Photo-Optical Instrumentation Engineers 

The SPIE (Society of Photo-Optical Instrumentation Engineers) has a large literature [23 - 
25] on machine vision. Their approach is to solve real industrial problems. They have real- 
ized the importance of illumination for detecting defects in surfaces. However, their 
approach is best described as expert experience. For each inspection task, they formulate an 
illumination strategy, based on their own trial and error experience [23]. They have even 
developed expert systems, which give illumination strategies based on task specifications 
[24]. For example, one application is to view bright metal surfaces without causing glinting. 
Their solution is to use diffuse illumination. While their techniques are useful, they tend to 
be adhoc. 

2.6. Summary/Conclusions 

Cowan addressed the issues of visibility, imaging parameters, irradiance, and lambertian 
edge contrast. Tsai and Tarabanis addressed the issues of visibility and imaging parameters. 
Sakane addressed the issue of illumination in order to determine the shape of a lambertian 
object. Yi addressed the issue of finding specular lobe edge contrast. 
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The problem of finding edge contrast is very different than recovering surface shape using 
photometric methods. In order to generate edge contrast, one only needs to achieve a high 
intensity difference between the two surfaces that form the edge. This is very different from 
using intensity to find shape. Sakane's work is the closest to our research. There are at least 
three major differences between Sakane's approach and ours. First, we propose a new metric 
for finding orientation error. This is developed in section 3. Secondly, Sakane solves the 
problem of positioning lights to avoid objects in the environment or the manipulator holding 
the camera. We are positioning lights so that we illuminate a specified set of object faces in 
an efficient manner. Thirdly, we incorporate an accurate sensor model in our solution. 
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3. 2-D Lambertian Illumination 
Lambertian illumination is important for two reasons. First, the illumination of lambertian 
surfaces is a basic problem. Lambertian surfaces are one of the three basic surface types. 
(Lambertian, specular lobe, and specular spike describe the basic surface types.) Solving the 
lambertian illumination problem will provide a foundation for approaching other, more dif- 
ficult problems. 

The 2-D problem presented here is simplified. However, it will provide insight into the solu- 
tion space of the lambertian illumination problem. The solution space of the 3-D lambertian 
illumination problem, which we present later in this paper, is much more complex. It is very 
hard to visualize because of its high dimensionality. 

3.1. Introduction 

For our initial investigations, we have chosen a simplified version of the 2-D lambertian 
illumination problem. The problem does not consider surfaces, but considers discrete nor- 
mals in a 2-D space. We concentrate on visibility, minimum coverage, and the accuracy of 
surface normal recovery. Our discrete normals exhibit lambertian reflectance characteristics. 
Our sensor noise model is a fixed amount of sensor noise. (In 3-D we will use a geometric 
modeler and a planning system to reason about surfaces. We will also use an accurate sensor 
noise model.) 

Our approach is to identify the visibility range for each normal. After we have the visibility 
range for each normal, we break the viewing circle into visibility regions. Within each visi- 
bility region, certain normals are viewable (This idea is similar to an aspect.) We then try to 
find combinations of visibility regions that provide an exact cover of the normals we are try- 
ing to view. Since we are working in 2-D lambertian space, we need two light sources to 
recover the normals within each visibility region. After we have our minimum covers, we 
determine the most reliable lighting positions for recovering the orientation of the surface 
normals within each visibility region. 

3.2. 2D Visibility Regions 

Given a set of normals (nl, n2, n3,....), we first find the visible range for each normal. Since 
these are discrete normals, we do not need to consider occlusion. So, the visible range of 
each normal is simply +/- 90° with respect to the normal's orientation. Once we have calcu- 
lated the visibility range for each normal, we divide the 2-D viewing circle into visibility 
regions. The regions are formed by sorting the visibility ranges of all the normals into a con- 
tinuous list. The list is then converted into intervals. Within each interval, certain normals 
will be visible. For example: 

If we have normals at 45°, 90°, 135°, and 180° we have the following visibility 
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ranges: 

normal 
designation 

normal 
visibility range 

designation 
Visibility Range 

A 45° VA 315.0° 135.0° 
B 90.0° VB 0.0° 180.0° 
C 135° VC 45.0° 225.0° 
D 180° VD 90.0° 270.0° 

2D Visibility range/region diagram: 

R3 
90° 

270° 
Fig. 4. Visibility Range/Region Diagram 

The associated visibility regions are: 

visibility region region designation normals visible 

0.0° 45.0° Rl 45.0°    90.0° 
45.0° 90.0° R2 45.0°    90.0°    135.0° 
90.0° 135.0° R3 45.0°    90.0°    135.0°   180.0° 

135.0° 180.0° R4 90.0°    135.0°   180.0° 
180.0° 225.0° R5 135.0°   180.0° 
225.0° 270.0° R6 180.0° 
270.0° 315.0° R7 none 
315.0° 360.0° R8 45.0° 

3.3.2D Exact Covers 

After we have the visibility regions, we find combinations of visibility regions that form 
exact covers of our set of normals (An exact cover contains all of the normals, non-redun- 
dantly.) Since the number of regions is small, we use exhaustive search to find the exact cov- 
ers. If "n" is the number of visibility regions, the complexity of this search is 0(2n). (In the 
next section of the paper, we develop a heuristic for finding exact covers.) For the previous 
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example, the exact covers are: 

Cover number visibility regions included 

1 R3 

2 R1,R5 

3 R2.R6 
4 R4,R8 

3.4.2D Orientation Error 

An error in light source illumination will cause an error in surface normal recovery. This can 
be seen from the lambertian equation: 

-l 
Six Sly 
Six S2y_ 

Nx 
Ny_ 

(1) 

(Six and Sly are the x and y components of the unit vector to light source number one. Nx 
and Ny are the x and y components of the unit surface normal. 11 is the measured intensity at 
N due to light source number one.) 

An error in either II or 12 will cause an error in Nx and Ny: 

Six Sly 
Six S2y_ 

71+5/1 

11 + 8/2 

Nx + 8Nx 

Ny + 8Ny 
(2) 

In matrix notation, we can write: 

S-1(/ + S7) = N + 8N 

For example, if we have a normal at 90°, SI at 100°, S2 at 80°, and 511 and 812 indepen- 
dently range from -0.1 to 0.1, we will get the following noisy normal distribution in Nx-Ny 
vector space (The nominal normal is the point Nx = 0.0, Ny = 1.0.): 

Ny 

1.50 

1.00 - 

0.50 

0.00 
-1.0 -0.5 0.0 0.5 1.0   Nx 

Fig. 5. Noisy Normal Distribution: N at 90°, SI at 100°, S2 at 80°. 
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We normalize the resulting values of Nx and Ny because the surface normal is by definition 
a unit vector. The noisy, normalized, normal is: 

N. 
Nx+8Nx Ny + SNy 

noise =   \ff + SN\' \N+8N\ 

N   ■    = Nx ■      Nv   ■ noise nwse'    ■'noise 

When we do this, we perform a non-linear transformation from Nx-Ny vector space to the 
unit normal circle. The angle that the noisy normal distribution projects to, on the unit nor- 
mal circle is the angular orientation error. This is shown below: 

Ny 

1.5 

1.0 

0.5 

0.0 

Noisy normal distribution 

Normalized 

unit normal 
Angular 

.orientation 

error 

-1.0 -0.5 0.0 0.5 1.0      Nx 

Fig. 6. Normalized Noisy Normal Distribution: N at 90°, SI at 100°, S2 at 80°. 

There may be little correlation between the magnitude of the normal vector's error in Nx-Ny 
vector space and the resulting angular orientation error. This point can be emphasized by 
looking at a second example. If we have a normal at 90°, SI at 10°, S2 at 170°, and 811 and 
812 independently range from -0.1 to 0.1, we will get the following normal distribution in 
Nx-Ny vector space (The nominal normal is the point Nx = 0.0, Ny = 1.0.): 

ty 

1 "l 
:   Normalized unit 

=   normal 

==         y/ 
1.0 w 
0.5 

 
1 

 

II 
 

Noisy normal distribution 

00 i.i.i. 

-1.0 -0.5 0.0 0.5 1.0    Nx 

Fig. 7. Normalized Noisy Normal Distribution: N at 90°, SI at 10°, S2 at 170° 

In the two figures, the worst case error between the nominal normal and the noisy normal 
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distribution is the same. The noisy normal distribution in the two figures is the same except 
for a 90° rotation. However, normalization causes the angular orientation errors to be very 
different. The angular orientation error is 29.9° in the first figure and is 5.8° in the second 
figure. 

Sakane [10, 11] proposes a metric of surface orientation reliability that relies on estimating 
the unnormalized vector error. His method uses the condition number of the source matrix to 
estimate the error in the surface normal vector (By definition, INI =1.): 

|5N| |SI| 
w<cond(S).w 

As we have just seen, there is not necessarily any correlation between the magnitude of 5N 
and the resulting orientation error. 

If we look at our two previous examples: a normal at 90°, Si at 100°, S2 at 80°, and a nor- 
mal at 90°, SI at 10°, S2 at 170°,we get the following results from Sakane's method (In both 
examples, 811 and 812 independently range from -0.1 to 0.1.): 

For the first example, the condition of the matrix is 5.67 (found using "svdcmp" of 
"Numerical Recipes in C"). The error is estimated to be < .579. This agrees with the 
magnitude of the worst case Nx error in our first plot. 

For the second example the condition of the matrix is also 5.67. The error is esti- 
mated to be < 3.266. This is an over estimation, since the plots show that the two 
examples produce the same maximum 8N. 

If we were to let a program search, in 1° degree increments, for the minimum error 
for the normal at 90° (the visibility range is between 0° and 180°). Sakane's method 
would yield a minimum at SI = 91° and S2 = 1°. As can be seen from the plots, the 
minimum error should occur when SI is close to 0° and S2 is close to 180°. 

Due to these problems with Sakane's method, we developed another method for optimizing 
light source placement on lambertian surfaces. Our method calculates N + 8N for a given S, 
N, and 81. We normalize the resulting N + SN vector (We call the normalized N + 8N vector 
Nnoise.). Then, we find the angular orientation error between N and Nnoise. 

6      = acos(N»N„n.J err v noise' 

For the first example, our method produces an error of 29.9°. For the second example, our 
method produces an error of 5.8°. These errors agree with the angular errors in our plots. If 
we let our program search for the minimum error light source positions, for a normal at 90°, 
within the 0° and 180° visibility range, we find the minimum error happens at SI = 1° and 
S2 = 179°. (We are searching in 1° increments.) 

We go back to our exact cover example, where we had normals at 45°, 90°, 135°, and 180°. 
We let 811 and 812 independently range from -0.01 to 0.01, and assess our ability to accu- 
rately determine surface orientation within each visibility range, of each exact cover. Each 
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visibility range covers certain normals. We move two light sources, in one degree incre- 
ments, between the maximum and minimum visibility values of each visibility range. At 
each position, we find the total angular error, in degrees, for the normals within the visibility 
range. After searching through the whole visibility range, we find the light source placement 
with the minimum error. 

We get these results (Min_error is the sum of the angular errors, in degrees, for the normals 
within the visibility range. The columns 45°, 90°, 135°, and 180° list the angular error, in 
degrees, for each of these normals. Min_sl and Min_s2 are the light source positions that 
produced the minimum error.): 

cover 
Visibility 

Range 
Min_error 45° 90° 135° 180° min_sl min_s2 

1 90.0 
135.0 

4.10 0.60 1.45 1.45 0.60 91.0 134.0 

2 0.0 
45.0 

2.05 1.45 0.60 1.0 44.0 

2 180.0 
225.0 

2.05 0.60 1.45 181.0 224.0 

3 45.0 
90.00 

3.50 1.45 1.45 0.60 46.0 89.0 

3 225.0 
270.0 

0.6 0.6 226.0 269.0 

4 135.0 
180.0 

3.50 0.60 1.45 1.45 136.0 179.0 

4 315.0 
360.0 

0.60 0.60 316.0 359. 

A tessellated error surface for cover 1 is show below. The error is greatest when the light 
sources are close together and is least when the light sources are far apart. 

Error- 
Degrees 

Error 
Degrees 

Fig. 8. 2D Angular Orientation Error Surface 
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4. 3-D Illumination Covers 
Finding illumination covers in 3D is similar to finding illumination covers in 2D. However 
the 3D problem is more complex. Given a 3D convex polyhedral object, and a set of faces 
on the object that we want to inspect, we want to place light sources around the object in a 
way that illuminates the set of object faces that we want to inspect, while minimizing the 
total number of measurements we need to make. 

In order to illuminate an object under inspection, we need to be able to divide the viewing 
sphere into aspects. Each aspect describes topologically connected viewing directions that 
see the same set of object faces. Eventually, aspects need to be combined in some manner 
that provides coverage of all the object faces that need to be examined. (We define our 
inspection task to be inspection of a specified set of object faces. This set may include all 
object faces, or it may be a proper subset of all object faces.) A combination of aspects that 
views all specified faces of an object in a non-redundant manner is called an exact cover. 
There are two types of aspects: aspects that are formed from viewpoints near the object and 
aspects that are formed by viewpoints far from the object. For now, we are concentrating on 
aspects that are formed from viewpoints far from the object. 

We generate CAD models of objects that we want to inspect using the "Vantage" geometric 
modeling system [30]. Using these models and the 3D-to-2D scene generation capabilities 
of Vantage, we can generate orthographic projections from various viewpoints of a tessel- 
lated icosahedron. By comparing the area of each visible object face with its foreshortened 
projected area, we can determine which object faces are completely visible from each view- 
point. If the face is more than 99% visible, we consider the face to be completely visible. 

Once we know which object faces are visible from each icosahedron viewpoint, we merge 
adjacent icosahedron viewpoints that view the same set of object faces. The resulting 
merged set of icosahedron viewpoints forms an aspect. Each aspect is a continuous viewing 
region. A camera or light source placed anywhere within the region will view the same set 
of object faces. 

Given the list of faces visible from each aspect and a list of all the faces on the object that we 
are inspecting, we can determine combinations of aspects that form exact covers. 

4.1.3D Aspect Generation 

Koenderink and van Dorn [15] described aspects and their associated data structure the 
visual potential (aspect graph). Since then, many researchers [22] have explored aspect 
graphs, and their application to computer vision tasks. The primary application of aspect 
graphs to computer vision has been object recognition [16, 17]. Aspect graphs are used to 
predict potential object appearances. Then, sensor measurements which can recognize an 
object based upon the set of possible object appearances and sensor measurements can be 
planned. There are two types of aspect prediction possible exact aspect graphs and approxi- 
mate aspect graphs. Exact aspect graphs [18-21] use a 3D model of an object to predict 
where in viewpoint space visual events occur. Once the location of a visual event is known, 
viewpoint space can be partitioned into regions. Each region will correspond to an aspect. 
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Exact aspect graphs are mathematically complete. They describe every aspect that an object 
produces, no matter how small. However, producing an exact aspect graph for general 
objects is a non-trivial problem which is still an area of active research. 

The approximate aspect graph approach [16, 17] uses a tessellated viewing sphere that sur- 
rounds the object. Views from each viewpoint on the viewing sphere are generated. Views 
that are topologically equivalent are merged into aspects. The approximate aspect graph 
method, unlike the exact aspect graph method, will work on all classes of objects. By using 
this approach, we will be able to inspect a large class of objects. 

The approximate aspect graph approach misses aspects that are close to the object being 
viewed (usually the viewing sphere is much larger than the object). The method may miss 
small aspects if the tessellation is not fine enough, and the approximate aspect graph 
approach is computational intensive. 

For our application, aspects that are close to the object are not important. We are trying to 
perform a macroscopic level inspection of an entire object, not a microscopic inspection of a 
partial face. Small aspects are undesirable because they are unstable. Computational load is 
not issue because the inspection plan can be generated off-line. 

Aspects are formed by using an 3-frequency (320 face) icosahedron. The icosahedron has a 
radius equal to 1000 times the largest diameter of the object being inspected. Views are gen- 
erated using orthographic projection. 

4.2.3D Exact Coverage 

The problem of finding all exact covers of a set of faces is equivalent to the set/subset exact 
cover problem. This problem is known to be NP-complete. In order to decrease the com- 
plexity of finding exact covers, we developed a heuristic search approach to the problem 
Our heuristic measure is: the number of object faces covered by the aspect. Our algorithm is 
as follows: 

1. Select an object face. 
2. Find the largest aspect, Amaxj, (aspect that sees the most object faces) 

that contains this object face. 
3. Delete any aspects that overlap Amaxj, including Amaxj, from the 

aspect-list. 
4. n=l. 
5. Find the largest remaining aspect in the aspect-list, Amaxn. 
6. See if the combination of Amaxj, Amax2, ... , Amaxn covers all object 

faces. If so, return the exact cover: Amaxj, Amax2, .., Amaxn. 
7. If not, delete any aspects that overlap Amaxn, including Amaxn, from the 

aspect-list. 
8. If the aspect-list is empty, signal failure and return. 
9. n = n+l. 
10. Go to step 5. 
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In steps 2 and 5, if there are two or more aspects that are the largest aspects, we trace out all 
the largest aspects in parallel. We can expand our criteria for finding the next aspect to 
expand in steps 2 and 5 to include the largest aspects, the 2nd largest aspects, ..., the qth 
largest aspects. As q increases, the algorithm will approach exponential complexity. 

The maximal aspect heuristic was chosen because we are trying to minimize the number of 
sensor measurements needed to cover an object. By choosing aspects that cover as many 
object faces as possible, we maximize the coverage of each sensor measurement. This 
should tend to minimize the number of sensor measurements needed. 

We do not offer a formal proof that our algorithm will succeed for all objects. (The success 
of the algorithm is dependent on the tessellation of the viewing sphere since some aspects 
might be missed if the tessellation is not fine enough.) However, we can say that as our 
search expands to include the qth largest aspect, the aspect size will in the worst case 
approach the size of a single face. This is possible in the case of cube, where it is possible to 
have singular aspects that contain each cube face. Then, an exact cover can be formed by 
combining these single face aspects. As object complexity increases, the object will eventu- 
ally approach a tessellated sphere. In this case, two views, 180° apart, provide an exact 
cover. 

In order to test our algorithm against the set of exact covers, we compared our level one 
search (only the largest aspects), with deeper level searches (largest aspects, the 2nd largest 
aspects,..., the qth largest aspects) for the following objects:. 

£uke Truncated Cone 

Double Truncated Cone 

Tetrahedron 

Fig. 9. Convex Polyhedra Used for Exact Cover Tests 

The covers in Table 1 include aspects made up of any number of icosahedron viewpoints. 
For photometric stereo, we would need to place three light sources in an aspect. Therefore, 
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any aspect would need to be made up of at least three icosahedron viewpoints. The results in 
Table 2 are for photometric stereo. Only aspects made up of at least 3 icosahedron view- 
points are allowed to be part of an exact cover. 

Table 1: Exact Covers - All Aspects 

Search Depth cube tetrahedron 
truncated 

cone 
double 

truncated cone 

1 4 12 41 79 

2 68 21 45 79 

3 68 23 45 79 

4 23 

Table 2: Exact Covers for photometric stereo- Aspects of size 3 and greater. 

Search Depth cube tetrahedron 
truncated 

cone 
double 

truncated cone 

1 4 7 13 21 

2 4 13 13 21 

3 4 14 13 21 

The reason that we do not see a jump in the number of aspects for the cube when we 
increase the search depth from 2 to 3 is that the icosahedron's viewpoints do not line up with 
the cube's faces. So, we do not have any aspects that see only one object face. We only have 
aspects that see two or three object faces. The single object face cube aspects are actually 
accidental aspects. They are not really useful because they occur at one exact viewing direc- 
tion. They are very unstable. In the case of the tetrahedron, we have a couple of aspects that 
see only one object face. These aspects are large, containing many icosahedron viewpoints. 
We also have aspects that see one object face, two object faces, and three object faces. 
Therefore, we have more jumps in the number of aspects for the tetrahedron than for the 
cube. 
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5. 3D Lambertian Illumination 
Light source positioning in 3D is similar to light source positioning in 2D. The goal is to 
find the positions for three light sources that illuminate a given set of object faces while min- 
imizing the "total orientation error" for the object faces. An exact illumination cover for a 
given set of object faces and a candidate set of light source positions is found using the heu- 
ristic developed in the previous section. Then, for each illumination aspect, three light 
sources are placed in all of the combinations of light source positions that comprise the illu- 
mination aspect. The number of combinations is "N choose 3", since we are placing three 
light sources in the N light source positions that comprise the aspect. The "total orientation 
error" is evaluated for each combination. The light source positions that produce the mini- 
mum total orientation error is returned by the planner. 

5.1.3D Orientation Error 

As we developed in the two dimensional case, an error in light source illumination will 
cause an error in surface normal recovery. This can be seen from the lambertian equation: 

Six Sly Slz 
-i 

n Nx 
Six Sly Slz ii — Ny 

S3x S3y S3z_ ßi \_Nz\ 

II, 12, and 13 are the mean, measured, light source intensities. Noise in either II, 12, or 13 
will cause an error in Nx, Ny, and Nz, producing a noisy normal: 

Six Sly Slz 
Six Sly Slz 
_S3x S3y S3z_ 

-1 
71 + 5/1 Nx + 8Nx 

72 + 8/2 = Ny + $Ny 

/3 + 8/3 Nz + &Nz_ 

In matrix notation, we can write: 

S_1(/ + S7) = N+8N 

The noisy, normalized, normal is: 

N 
Nx + 5Nx Ny + 8Ny Nz + SNz 

noise =  \N + 5N\ ' \N + 5N\ ' |iV + 8W| 

N. Nxniose' Nynoise' Nzn 

In the two dimensional case, the Nx-Ny error area was a quadrilateral. In three dimensions, 
the Nx-Ny-Nz error volume will be an eight sided polyhedra. In two dimensions, after nor- 
malization, the normal was projected onto the unit normal circle. In three dimensions, after 
normalization, the normal is projected onto the unit normal sphere. 

We define the orientation error to be the angle between the nominal unit normal and the 
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noisy unit normal. The orientation error depends on how we define the 81 terms. Initially we 
defined the worst case error to be: 

8/ = ±3o. 

By letting II, 12, and 13 independently take on a worst case +3GJ or -3(7; error, we generated 
8 potential worst case errors. However, the probability of having II, 12, and 13 simulta- 
neously have 3a values is very small (approximately 0.0133). 

A more realistic method of determining the error is to have the planner conduct a simulation 
using the intensity noise function. If we know, the mean intensity of each light source (This 
can be determined if the object's pose is known, if the light source directions are known, and 
if the light source radiances are known.) and the corresponding value of ai5 we can calculate 
a noisy surface orientation using the known light source positions. At each iteration, a ran- 
dom intensity for each light source is determined based on the mean light source intensity 
and Gj for that light source intensity. These three noisy intensity values are used to determine 
a noisy surface orientation. We repeat this 1000 times. We calculate the mean, noisy, surface 
orientation to be the center of mass of the 1000 noisy surface orientations: 

1000 1000 1000 

X  lNxnoiJi    I   Itynoiseh    I   ^Nznois J ,- 

noise 1000 . 1000 ' 100o 

Using each noisy surface orientation and the mean, noisy, surface orientation, we calculate 
the orientation error. 

9err = wos(Nnoise»Nnoise) 

Using the 1000 values of orientation error that our simulation produced, we then determine 
the mean surface orientation error, 0e„ , and its standard deviation, G(0err). 

The "total orientation error" for each illumination cover is the sum of the errors for each 
face illuminated by the cover. Where the error for each face is the mean orientation error + 3 
standard deviations. For n faces: 

6, , ,     = T [e,rP]. + 3[o(e   )] totalerr        i-i   L   errJ ,        L    v   err' ' i 

5.1.1. Source Normalization 

In any real system, the light sources will have different radiances. This will affect the value 
of G(0err). If the three light sources used to determine N do not have the same radiances, the 
three raw intensity values (II, 12, and 13) need to be normalized. We normalize to the mini- 
mum light source radiance. If we define minimax to be the minimum light source radiance 
of the three light sources that we are using, then for three measured intensities, our normal- 
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ization is: 

, minimax. 
llnormmeas l\ '*   meaS 

=    mimmax 
norm— Umax        " 

_   .minimax 
norm    „„ —   ^    To '     meas tneas I3m„v 

where ilmax is the radiance of light source one. 

The normalization process affects the variance of the measured intensities and therefore 
affects G(6err). If the planner has knowledge about light source radiances, then it can take 
this information into account when it predicts what G(0err) we can expect. 

The planner will predict the mean light source intensities for a face based upon the face's 
assumed pose, and the known light source radiances: 

"Plan = nmaAS1'N) 

"Plan = *maXW") 

i2 ,     = i2      (S2»N) plan maxv ' 

where SI is the direction of light source one, and N is the normal of the face. 

These mean intensities should be the intensities that irradiate the CCD of our camera. These 
mean intensities determine the variance of our measurement. So, for each mean intensity, 
our planner determines the variance (actually the standard deviation) that we expect to mea- 
sure. We will call these three values o^, erg, c% . 

However, the normalization of the intensity values affects these variances. So that: 

, minimax. 
<?-, =    (—Tj )<J- 

11 plan l\max ll 

, minimax, 
O",      = (—^ )G_ 

""" l2max i2 

, minimax. 
CT/3      = (-^ )CT^ 13 plan I3mnr J3 
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The planner's normalized predicted intensities are: 

.minimax. 
1  normplan        '     ;i > l  plan 

max 

_    minimax —  
'   normplan ~   ^    r'7 P,a" 

max 

_  .minimax -r^  
1   normplan ~   '_7$ 'l  plan 

max 

So, the intensity distributions used by the planner are: 

plan 

N^2normpian^l2pJ 

N^"normplan' %J 

The planner can then use this distribution in its simulation. The planner uses these distribu- 
tions to produce 1000 noisy sets of intensity values. Then, it uses these 1000 noisy sets of 
intensity values to calculate 1000 values of Nnoise. Using the 1000 values of Nnoise, the plan- 
ner can calculate the mean surface orientation error, 6err, and its standard deviation, a(0err). 

As can be seen, the error prediction part of the planner is becoming a simulator. Generally, 
as the planner incorporates more of the factors that influence the measurements, the plan- 
ner's predictions will become more accurate. It is an open question how accurate a planner 
should be. This will depend upon the application and the significance of the factors affecting 
the measurements. The amount of error caused by violating assumptions depends on how 
severely they are violated, and on how sensitive the measurements are to these violated 
assumptions. 

5.2. Light Intensity Variance 

The variance of the camera and digitizer, a\ , is a function of light intensity as shown by 
Healey [26, 27]. We have taken an empirical approach to determining the value of the func- 
tion. In general, our measurements are in good agreement with Healey's. However, we do 
observe deviation from Healey's data for very small values of I, and for values of I which 
are greater than 175. Healey's data does not go beyond this point. 

5.3. Camera Viewpoint Selection 

We need to position a camera so that it views all of the faces illuminated by each illumina- 
tion aspect. Camera visibility is determined in an identical manner to determining light 
source visibility. The only difference is that the set of potential camera viewpoints may be 
different from the set of light source directions. Given a set of potential camera viewpoints, 
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virtual cameras are positioned at each viewpoint. Object face visibility is determined. If the 
set of illuminated faces is a subset of the set of visible faces, then the viewpoint is added to a 
list of candidate viewpoints. The viewpoint, from the list of candidates, that views the set of 
faces to be inspected with the least foreshortening is selected as the camera viewpoint. The 
idea of this metric is to maximize the area of each inspected face in our image. This should 
make defects maximally visible. Formally, over the set of possible viewpoints, we try to 
minimize: 

.11 l 
max{ —, £-, ..., £-) 

COS0.   cos 9,,        cos0 1 2 n 

where 0; measures the angle between the viewpoint and faces 1 ... n. 

5.4. Error Sources 

There are two basic types of errors in photometric measurements of lambertian objects: ran- 
dom errors and fixed errors. Random errors are due to a,. These are the errors that we try to 
predict with our planner. Fixed errors include: errors in light source direction, errors in light 
source radiance, errors in the photometric function (deviation from pure lambertian). Fixed 
errors can be accounted for by a careful calibration procedure. [28] 

There is also a third type of error. This is the potential error in object pose. Our planner 
assumes that the object being viewed is in a certain orientation. If the object is in a different 
orientation, the planner's predicted surface orientation error will be erroneous. A change in 
orientation will cause a change in the incident angles between the light sources and object 
faces. This will cause a change in expected mean light source intensities, O; , and thus the 
mean surface orientation error, 9err, and its standard deviation, a(0err). 

The amount of change in mean light source intensities depends on the lambertian photomet- 
ric function (the cosine function). If the incident angle is near normal, a small change in 
rotation will not cause a large change in the expected mean light source intensity. If the inci- 
dent angle is small, a small change in rotation could cause a large change in the expected 
mean light source intensity. 

5.5. Texture and Gj 

Our use of Gs, assumes that the planar surfaces of our objects have no texture. Any spatial 
variation of the surface due to texture will cause an increase in the measured value of a; , 
beyond what is caused by the CCD alone. It would be possible to form an aggregate G2 . 

a2 =a2    +a2 

'aggregate lCCD 'texture 

The aggregate would be composed of two terms. One term would be the intensity variation 
caused by the camera and digitizer. The second term would be the intensity variation due to 
texture. (These terms are independent.) In this way, surface defects larger than the surface 
deviation caused by texture could be reliably detected. 
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6. Implementation 
The planner was implemented in Lucid™ Common Lisp. Experiments were carried out 
using a Puma 560 robot and an array of light sources placed at the vertices of a 1-frequency 
icosahedron. (For structural reasons, 61 faces actually exist and 36 of the vertices have light 
sources). A Sony XC-57 camera, with a Nikon AF Nikkor Micro 105mm F2.8 lens, was 
mounted on the Puma's end effector. The Puma Robot, with the camera mounted on it could 
only reach 22 of the 61 icosahedron faces (Camera viewpoints were located at the faces of 
the 1-frequency icosahedron.) because of robot workspace constraints. Images were digi- 
tized using an Androx ICS-400 digitizer. 

its! 
Robot CCD 

Camera 

Light 
Source 
Array 

Object 
Under 
Inspection 

Fig. 10. Experimental Setup 

6.1. Measurement of Light Intensity Variance 

In order to measure Gp illumination, viewing geometry, camera temperature, and CCD volt- 
ages must be controlled. Any variance in any of these parameters will cause added variation 
to G;. We used a light source controlled with a linear DC power supply and used a linear DC 
power supply to power the Sony XC-57 camera (We found that controlling the camera with 
a standard switching camera power supply increased a{.) Camera temperature was held con- 
stant by allowing the camera to reach steady state temperature with respect to its environ- 
ment. Viewing geometry was maintained by rigidly supporting the camera and target. Our 
target was of uniform matte reflectance. 

We selected four pixels on the CCD, and took 1000 images of our fixed scene. Illumination 
was changed by varying the incident angle between the light source and target. We took 
measurements between mean intensities of 8 (dark current value) and 227. Normality was 
checked by plotting a histogram of intensity for each pixel, and by using the Kolmogrov- 
Smirnov test [29]. The average significance level of the Kolmogrov-Smirnov test was 0.342. 
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A representative histogram is shown below: 

Intensity Histogram 
300.0 

o c 
CD 

200.0 

100.0 ■ 

°ft 180.0 190.0 
Intensity 

200.0 210.0 

Fig. 11. Intensity Histogram 

For each pixel we calculated the mean, variance, and standard deviation of the intensity 
measurements. We fitted a second degree polynomial to the raw data, and used this polyno- 
mial in our planner. The plot of the standard deviation of intensity is shown below. The fitted 
polynomial is shown as the solid line. 

2.0 

0.0 50.0       100.0      150.0 
Intensity 

Fig. 12. Plot of Gj 

200.0      250.0 
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7. Experiments 
Experiments were conducted to validate the lambertian illumination planner. We wanted to 
verify that the illumination plans generated by the planner were valid and accurate. In order 
to do this, we tested the results of the planner for a set of illumination plans. One set of plans 
tested was near the most accurate illumination plan generated by our illumination planner. 
The other set of plans tested was near the least accurate illumination plan generated by our 
illumination planner. The results of the two plans were compared with each other and with 
the planner's predictions. We also verified that the light source viewpoint visibility and cam- 
era viewpoint visibility predicted by the planner were correct. 

7.1. Chalk Cube 

We milled a cube out of 'railroad chalk'. The cube was mounted under our array of light 
sources. The cube was oriented so that the X, Y, and Z axes intersect at the center of the 
cube. The X axis intersects one edge of the cube. The Y axis intersects another edge of the 
cube. The Z axis intersects the center of the top face of the cube: 

Fig. 13. Geometric Model of Chalk Cube 

The nominal orientation of the cube's faces is shown in the table below. 

Face Nx Ny Nz 

1 -0.707 0.707 0.0 
2 -0.707 -0.707 0.0 
3 0.707 -0.707 0.0 
4 0.707 0.707 0.0 
5 0.0 0.0 1.0 
6 0.0 0.0 -1.0 
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The possible light source directions: 

Light 
Source 

Nx Ny Nz 

1 -0.3090 -0.5000 0.8090 

2 0.3090 -0.5000 0.8090 

3 0.0000 0.0000 1.0000 

4 0.0000 -0.8507 0.5257 

5 0.5257 0.0000 0.8507 

6 -0.5257 0.0000 0.8507 

7 -0.8090 -0.3090 0.5000 

8 -0.5000 -0.8090 0.3090 

9 0.5000 -0.8090 0.3090 

10 0.8090 -0.3090 0.5000 

11 0.3090 0.5000 0.8090 

12 -0.3090 0.5000 0.8090 

13 0.0000 -1.0000 0.0000 

14 0.8090 0.3090 0.5000 

15 -0.8090 0.3090 0.5000 

16 -0.8507 -0.5257 0.0000 

17 0.8507 -0.5257 0.0000 

18 0.0000 0.8507 0.5257 

19 -1.0000 0.0000 0.0000. 

20 -0.5000 -0.8090 -0.3090 

21 0.5000 -0.8090 -0.3090 

22 1.0000 0.0000 0.0000 

23 0.5000 0.8090 0.3090 

24 -0.5000 0.8090 0.3090 

25 0.0000 -0.8507 -0.5257 

26 0.8507 0.5257 0.0000 

27 -0.8507 0.5257 0.0000 

28 -0.8090 -0.3090 -0.5000 

29 0.8090 -0.3090 -0.5000 

30 0.0000 1.0000 0.0000 

31 -0.3090 -0.5000 -0.8090 

32 0.3090 -0.5000 -0.8090 

33 0.8090 0.3090 -0.5000 

34 0.5000 0.8090 -0.3090 

35 -0.5000 0.8090 -0.3090 

36 -0.8090 0.3090 -0.5000 
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The possible viewing directions: 

View Nx Ny Nz 

5 -0.3090 -0.1667 0.9363 

15 -0.1667 0.9363 0.3090 

16 0.1667 0.9363 0.3090 

17 0.0000 0.3568 0.9342 

18 0.0000 0.6667 0.7454 

19 -0.3090 0.1667 0.9363 

21 -0.5774 0.5774 0.5774 

22 -0.2697 0.7697 0.5787 
23 -0.5787 0.2697 0.7697 
24 -0.7697 0.5787 0.2697 

25 0.5774 0.5774 0.5774 

26 0.2697 0.7697 0.5787 
27 0.5787 0.2697 0.7697 
28 0.7697 0.5787 0.2697 
30 -0.7454 0.0000 0.6667 

34 0.7454 0.0000 0.6667 

37 -0.3568 0.9341 0.0000 

41 0.3568 0.9341 0.0000 

The best case inspection plans, assuming ideal, equal radiance, light sources, found by our 
planner are below. Cover 1 and cover 2 are not implementable because the indicated aspects 
are not viewable. 

Cover Aspect 
Faces 

Covered 
View Light Sources 

1 1 2,3 none 13,31,32 

1 2 1,4,5 18 11,23,24 

2 1 1,4 17 30, 34, 35 

2 2 2,3,5 none 1,8,9 

3 1 1,2 19 19,28, 36 

3 2 3,4,5 30 5, 10,14 

4 1 3,4 34 17, 26,29 
4 2 1,2,5 30 6,7,15 

Inspectable faces are defined as the object faces that can be viewed from the set of possible 
viewpoints (face 6 is not inspectable). For each light source, we determine which of the 
inspectable faces are illuminated. (If a non-inspectable face is illuminated, we treat it as a 
"don't care".) The different combinations of illuminated faces form illumination aspects. 
These aspects are formed into exact illumination covers. We used our "largest aspect" heu- 
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ristic, with a search depth of one, to form the exact covers. It is possible that an illumination 
aspect contains a combination of object faces that is not viewable. This leads to the cases 
like covers 1 and 2, which both contain illumination aspects that are not viewable. (If a 
potential viewpoint views a non-inspectable face, we treat it a "don't care".) 

We implemented a near best case inspection plan for faces 3 and 4 using light sources 22, 
29, 33 and viewpoint 34. The near worst case plan for faces 3 and 4 was light sources 22,26, 
29 and viewpoint 34. The planner determined that faces 1, 2, and 5 could only be illumi- 
nated by light sources 6,7,15. The camera viewpoint for faces 1,2, and 5 was viewpoint 30. 

We implemented these inspection plans on our experimental setup. The results, using mea- 
sured radiance light sources: 

■:^mm9M::mM Planner 
Predictions 

Measurements 

Face 
Light 

Sources 
Pixel 

Number 
9err- 

Degrees 
°(6eiT) - 
Degrees 

Qerr" 
Degrees 

a(0erT) - 
Degrees 

3 22,29,33 1 1.21 0.68 1.11 0.62 

3 22,29,33 2 1.21 0.68 1.13 0.61 

3 22,26,29 1 1.55 1.05 1.70 1.14 

3 22,26,29 2 1.55 1.05 1.75 1.18 

4 22,29,33 3 1.21 0.67 1.24 0.64 

4 22,29,33 4 1.21 0.67 1.32 0.69 

4 22,26,29 3 1.64 1.12 1.79 1.14 

4 22,26,29   - 4 .1,64 1.12 1.85 1.13 

1 6,7,15 5 1.10 0.67 1.16 0.68 

1 6,7,15 6 1.10 0.67 1.12 0.66 

2 6,7,15 7 1.06 0.62 1.31 0.75 

2 6,7,15 8 1.06 0.62 1.28 0.73 

5 6,7,15 9 1.18 0.61 1.06 0.57 

5 6,7,15 10 1.18 0.61 1.20 0.71 

5 6,7,15 11 1.18 0.61 1.08 0.57 

5 6,7,15 12 1.18 0.61 1.04 0.58 

Measurements were made by taking 1000 images with each light source. A small number of 
pixels (4) were recorded from each image. This produced a data stream for that pixel. By 
combining data streams for 3 light sources, we calculated a mean surface orientation, a 
mean surface orientation error, and the standard deviation of surface orientation error. 

In general, the measured mean orientation error and standard deviation orientation error are 
within 20% of the planner. Many are within 10%. 

The difference between the near best case and near worst case plans should be noted. For 
Face 3, the near best case illumination plan results in a 2.04° (6err + 3a(0err)) predicted error. 
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In contrast, the near worst case illumination plan results in 4.7° predicted error. For Face 4, 
the near best case illumination plan results in a 3.22° predicted error. In contrast, the near 
worst case illumination plan results in 5.0° predicted error. 

Images of Faces 3 and 4 using light sources 22, 29, and 33. (Face 5 is not illuminated.) 

Fig. 14. Intensity Images: Faces 3 and 4 of cube 

Needle map produced by the intensity images from light sources 22, 29, and 33. 

Fig. 15. Needle Map: Faces 3 and 4 of cube 

Images of Faces 1,2, and 5 using light sources 6,7 and 15. 

Fig. 16. Intensity Images: Faces 6,7, and 15 of cube 
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Needle map produced by the intensity images from light sources 6,7, and 15. 

Fig. 17. Needle Map Faces: 6,7, and 15 of cube 

Illumination aspects from the 1, 1, 1 viewing direction (Numbers are light source numbers. 
Light sources that are shaded the same belong to the same illumination aspect.): 

Fig. 18. Illumination aspects from the 1,1,1 viewing direction 

Illumination aspects from the -1, 1, 1 viewing direction (Numbers are light source numbers. 
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Light sources that are shaded the same belong to the same illumination aspect.): 

Fig. 19. Illumination aspects from the -1, 1, 1 viewing direction 

Illumination aspects from the 0, 0, 1 viewing direction (Numbers are light source numbers. 
Light sources that are shaded the same belong to the same illumination aspect.): 

Fig. 20. Illumination aspects from the 0, 0, 1 viewing direction 
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8. Conclusions 
We have developed an illumination planner for convex lambertian objects. The planner 
determines how to position light sources around an object so that we illuminate a specified 
set of faces in an efficient manner. The planner uses an efficient heuristic, that we have 
developed, for finding exact illumination covers in 3D. Using a noise model of the CCD, a 
CAD model of the object we are inspecting, and the lambertian reflectance model, the plan- 
ner performs a statistical simulation to determine how much uncertainty we can expect in 
our shape measurement for a given light source configuration. The planner generates an illu- 
mination plan that illuminates the specified set of object faces while having a minimum 
amount of uncertainty. 

We have verified that the illumination plans generated by the planner are valid and accurate. 
In most cases the uncertainty predictions made by the planner were accurate to within 10%. 

This work has potential applications to inspection problems in industrial environments. 
Although the photometric stereo method requires careful calibration. We have shown that it 
is possible to accurately predict measured shape uncertainty. This ability can be used to reli- 
ably detect defects. 
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